56 research outputs found

    New Queer Cinema: Fighting Censorship with Independent Film

    Get PDF
    A look at examples of the New Queer Cinema movement and how queer filmmakers rebelled against the lingering impact of the Hays Code, film industry standards and the MPAA rating system.https://scholarscompass.vcu.edu/jurgen/1014/thumbnail.jp

    Denoising time-resolved microscopy image sequences with singular value thresholding.

    Get PDF
    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second.Junior Research Fellowship from Clare CollegeThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ultramic.2016.05.00

    Compressed sensing electron tomography of needle-shaped biological specimens--Potential for improved reconstruction fidelity with reduced dose.

    Get PDF
    Electron tomography is an invaluable method for 3D cellular imaging. The technique is, however, limited by the specimen geometry, with a loss of resolution due to a restricted tilt range, an increase in specimen thickness with tilt, and a resultant need for subjective and time-consuming manual segmentation. Here we show that 3D reconstructions of needle-shaped biological samples exhibit isotropic resolution, facilitating improved automated segmentation and feature detection. By using scanning transmission electron tomography, with small probe convergence angles, high spatial resolution is maintained over large depths of field and across the tilt range. Moreover, the application of compressed sensing methods to the needle data demonstrates how high fidelity reconstructions may be achieved with far fewer images (and thus greatly reduced dose) than needed by conventional methods. These findings open the door to high fidelity electron tomography over critically relevant length-scales, filling an important gap between existing 3D cellular imaging techniques.The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiativeā€“I3), as well as from the European Research Council under the European Unionā€™s Seventh Framework Programme (FP/2007-2013)/ERC grant agreement 291522 - 3DIMAGE. B.W. and E.S. acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SPP 1570 as well as through the Cluster of Excellence ā€œEngineering of Advanced Materialsā€ at the Friedrich-Alexander-UniversitƤt ErlangenNĆ¼rnberg. G.D. and C.D. acknowledge funding from the ERC under grant number 259619 PHOTO EM. B.W. acknowledges the Research Training Group ā€œDisperse Systems for Electronic Applicationsā€ (DFG GEPRIS GRK 1161). R.L. acknowledges a Junior Research Fellowship from Clare College.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ultramic.2015.10.02

    Directional Sinogram Inpainting for Limited Angle Tomography

    Get PDF
    In this paper we propose a new joint model for the reconstruction of tomography data under limited angle sampling regimes. In many applications of Tomography, e.g. Electron Microscopy and Mammography, physical limitations on acquisition lead to regions of data which cannot be sampled. Depending on the severity of the restriction, reconstructions can contain severe, characteristic, artefacts. Our model aims to address these artefacts by inpainting the missing data simultaneously with the reconstruction. Numerically, this problem naturally evolves to require the minimisation of a non-convex and non-smooth functional so we review recent work in this topic and extend results to fit an alternating (block) descent framework. \oldtext{We illustrate the effectiveness of this approach with numerical experiments on two synthetic datasets and one Electron Microscopy dataset.} \newtext{We perform numerical experiments on two synthetic datasets and one Electron Microscopy dataset. Our results show consistently that the joint inpainting and reconstruction framework can recover cleaner and more accurate structural information than the current state of the art methods

    Licence to be active: parental concerns and 10ā€“11-year-old children's ability to be independently physically active

    Get PDF
    Background Physical activity independent of adult supervision is an important component of youth physical activity. This study examined parental attitudes to independent activity, factors that limit licence to be independently active and parental strategies to facilitate independent activity. Methods In-depth phone interviews were conducted with 24 parents (4 males) of 10ā€“11-year-old children recruited from six primary schools in Bristol. Results Parents perceived that a lack of appropriate spaces in which to be active, safety, traffic, the proximity of friends and older children affected childrenā€™s ability to be independently physically active. The final year of primary school was perceived as a period when children should be afforded increased licence. Parents managed physical activity licence by placing time limits on activity, restricting activity to close to home, only allowing activity in groups or under adult supervision. Conclusions Strategies are needed to build childrenā€™s licence to be independently active; this could be achieved by developing parental self-efficacy to allow children to be active and developing structures such as safe routes to parks and safer play areas. Future programmes could make use of traffic-calming programmes as catalysts for safe independent physical activity

    Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms.

    Get PDF
    Catalytic and optical properties can be coupled by combining different metals into nanoscale architectures in which both the shape and the composition provide fine-tuning of functionality. Here, discrete, small Pt nanoparticles (diameter = 3-6 nm) were grown in linear arrays on Au nanoprisms, and the resulting structures are shown to retain strong localized surface plasmon resonances. Multidimensional electron microscopy and spectroscopy techniques (energy-dispersive X-ray spectroscopy, electron tomography, and electron energy-loss spectroscopy) were used to unravel their local composition, three-dimensional morphology, growth patterns, and optical properties. The composition and tomographic analyses disclose otherwise ambiguous details of the Pt-decorated Au nanoprisms, revealing that both pseudospherical protrusions and dendritic Pt nanoparticles grow on all faces of the nanoprisms (the faceted or occasionally twisted morphologies of which are also revealed), and shed light on the alignment of the Pt nanoparticles. The electron energy-loss spectroscopy investigations show that the Au nanoprisms support multiple localized surface plasmon resonances despite the presence of pendant Pt nanoparticles. The plasmonic fields at the surface of the nanoprisms indeed extend into the Pt nanoparticles, opening possibilities for combined optical and catalytic applications. These insights pave the way toward comprehensive nanoengineering of multifunctional bimetallic nanostructures, with potential applications in plasmon-enhanced catalysis and in situ monitoring of chemical processes via surface-enhanced spectroscopy.R. K. L. acknowledges support from a Clare College Junior Research Fellowship. S. M. C. acknowledges support from a Gates Cambridge Scholarship. This work has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative-I3), and support from the European Research Council, Reference 291522 3DIMAGE. J. E. M. acknowledges support from the Research Corporation for Science Advancement.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jpcc.6b0210
    • ā€¦
    corecore